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Recent work on the evolution of behaviour is set in a structured population, providing a systematic way to describe gene flow

and behavioural interactions. To obtain analytical results one needs a structure with considerable regularity. Our results apply to

such “homogeneous” structures (e.g., lattices, cycles, and island models). This regularity has been formally described by a “node-

transitivity” condition but in mathematics, such internal symmetry is powerfully described by the theory of mathematical groups.

Here, this theory provides elegant direct arguments for a more general version of a number of existing results. Our main result is

that in large “group-structured” populations, primary fitness effects on others play no role in the evolution of the behaviour. The

competitive effects of such a trait cancel the primary effects, and the inclusive fitness effect is given by the direct effect of the actor

on its own fitness. This result is conditional on a number of assumptions such as (1) whether generations overlap, (2) whether

offspring dispersal is symmetric, (3) whether the trait affects fecundity or survival, and (4) whether the underlying group is abelian.

We formulate a number of results of this type in finite and infinite populations for both Moran and Wright–Fisher demographies.
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A standard approach for the study of the selective effects of a

social trait is provided by Hamilton’s (1964) inclusive fitness ef-

fect, measured as the sum of the fitness effects of a behavioural

deviation, each effect weighted by the relatedness of the actor to

the recipient. It is well understood that this sum must include “all”

effects, the “primary” effects that follow a direct interaction, for

example on fecundity, as well as the resulting “secondary” com-

petitive effects, for example, on mortality arising from changes

in fecundity. At some level, this was well understood right from

the beginning, but we suspect that the significance of the sec-

ondary effects was underestimated until more systematic studies

of structured populations were undertaken. Wilson et al. (1992)

in a Monte Carlo study of a large two-dimensional lattice popu-

lation with limited dispersal, made the surprising discovery that

an allele for altruistic behaviour to a neighbor declined in fre-

quency no matter how great was the benefit b. As there was

significant relatedness R between neighbors, this seemed to con-

tradict Hamilton’s (1964) rule that this allele should increase in

frequency whenever Rb > c where c is the cost of the altruis-

tic act. This observation led to the an analysis of Taylor (1992a,

1992b) showing that in both an infinite island model and a one-

dimensional lattice model the conferred benefit b of the altruistic

act would be exactly cancelled by secondary competitive effects

removing b completely from the inclusive fitness effect of the

action. This effect was generalized by Queller’s (1994) concept

of “economic neighborhood,” which distinguished the “scale of

competition” from the “scale of interaction.” The idea is that

the former must be larger than the latter for altruism to be fa-

vored, and in Taylor’s (1992a,b) examples, they were precisely the

same.
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From that time forward, a large body of literature grew up

around the study of cooperation and altruism in structured popu-

lations, both theoretical and experimental. On the theoretical side,

there was much work on evolutionary games on graphs, for ex-

ample extensive work with prisoner’s dilemma (Nowak and May

1992; Nakamaru et al. 1997, 1998; Ohtsuki and Nowak 2006b

and Ohtsuki et al. 2007, the latter providing a good summary of

the area). On the experimental side, we point to a pair of studies

of cooperation in a structured population of the iron-scavenging

bacteria Pseudomonas aeruginosa. Cooperators in this population

incur a cost to produce siderophores, agents that release iron held

in the environment, making it available for general use. Griffin

et al. (2004) and Kummerli et al. (2009) manipulated the level of

clumping and of dispersal to provide a range of values of both

local relatedness and scale of competition, and found that co-

operation was most favored when the latter was relatively small

and the former was relatively large. The latter paper explicitly

discussed “budding,” a form of clumped dispersal, which is of

interest to those who study homogeneous populations in that the

given structure (rules for dispersal and interaction) appear to be

the same for every individual, but no “group” structure can be

found and altruism can in fact be favored (Gardner and West

2006).

However, it was some time until it was realized (Taylor et al.

2007b; Grafen and Archetti 2008) that the critical general assump-

tion that made these scales the same was that of a homogeneous

population structure. Our purpose here is to reformulate and ex-

tend these results. Our main result (Theorem 1) gives precise

technical conditions on a homogeneous population so that the

primary and secondary fitness effects of a social behaviour all

sum to zero leaving us with only the fitness effects of the actor

on herself. This result applies in both a finite and infinite popula-

tion, and in continuous overlapping (Moran model) and discrete

nonoverlapping (Wright–Fisher) generations models, although in

both cases there are technical conditions which apply.

DEMOGRAPHY

We structure the population as a set of breeding sites, each oc-

cupied by a single asexual breeder. Diagrammatically, we rep-

resent the sites as the nodes of a graph and use the arc from

node j to node k to represent the relationship of j to k. We let

the breeder at site j have fecundity Fj and survival Sj. We work

with two standard demographics, Wright–Fisher and Moran. The

Wright–Fisher model has discrete nonoverlapping generations.

The breeder at site j produces a large number Fj of offspring and

then dies. Thus all survivals Sj are zero. Offspring born at site

j disperse to compete at site k with probability d(j, k), so that∑
k d( j, k) = 1. At each site, the offspring then compete fairly

for the breeding spot, and a new generation begins. In the Moran

model, generations overlap and for any breeder, reproduction and

death are events distributed in continuous time. We work with

two standard protocols for this model BD (birth–death) and DB

(death–birth) (Ohtsuki and Nowak 2006a). Under BD, a birth

occurs at site j at rate Fj and the offspring replaces the breeder

at site k with relative probability d(j, k)(1 − Sk), the product of

the dispersal probability and the node k mortality rate. Under

DB, a death occurs at node k at rate given by breeder mortality

1 − Sk and the colonizing offspring comes from node j with

relative probability Fj d(j, k). Our main result will assume that

dispersal is symmetric [d(j, k) = d(k, j)] for the Moran process

but not for Wright–Fisher.

INCLUSIVE FITNESS

We assume that the behaviour we are studying is genetically deter-

mined; thus the “effects” we are ultimately interested in capturing

are those on allele frequency. A standard approach is to take a

“resident” allele determining the behaviour we are interested in

studying and look at the fitness of a “deviant” alternative allele de-

fined for this purpose as the initial direction of frequency change

of this allele—where “initial” here refers to the activation of the

deviant allele from its neutral (resident) state. Under certain stan-

dard assumptions (of additive gene action and small effects of

individual genes on fitness), it is known (Rousset and Billiard

2000; Taylor et al. 2007a) that this measure of fitness is captured

(in sign) by Hamilton’s (1964) inclusive fitness effect that can be

written as

WI =
∑

i

wi Ri . (1)

Here, we assume that a single breeder (the actor) expresses

the deviant behaviour and we take wi to be the overall fitness

effect of this deviation on the breeder at site i. Finally, Ri is the

relatedness of the actor to breeder i (Michod and Hamilton 1980).

These overall fitness effects wi incorporate both the primary

and the secondary effects, but in a structured population, it makes

little sense to specify the latter up front. It is more reasonable (and

more useful) to specify the primary effects of the behavioural in-

teractions (e.g., on fecundity or on survival), and let the secondary

competitive effects be determined by the population structure.

Thus our main result (Theorem 1) will be formulated in terms of

the primary effects.

As an example and preview of Theorem 1, suppose that an

actor in a population structured as a group incurs personal cost

c to provide a total primary fitness increment b to one or more

others (different from the actor), where b and c might measure

effects on fecundity or on survival. Then, under certain condi-

tions, the inclusive fitness effect WI has the same sign as −c in an

infinite population and as −c − b/(N − 1) in a finite population

of size N. When the primary fitness effects are on fecundity (resp

survival), this result applies in the Moran model with the BD
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Figure 1. Two groups of order 8. The diagram of (A) illustrates

the group of all rotations that preserve the octagon under com-

position. There are eight of these. They can also be represented

as the set of integers n with 0 ≤ n ≤ 7 under addition “mod 8,”

that is, “casting out 8.” For example, 3 + 7 = 2. This group is

abelian. The diagram of (B) illustrates the group of all symmetries

of the square—the permutations of the vertices which preserve

the square, again under composition. One way to see that there

are eight of these is to note that 1 can be mapped to any corner,

k (4 choices), then 2 must be mapped to a corner adjacent to k

(2 choices), and then the images of 3 and 4 are determined. This

group is nonabelian. For example, a rotation about 90◦ followed

by reflection in the vertical axis maps 1 into itself, whereas in the

reverse order, 1 is mapped into 3.

(resp. DB) protocol with the proviso that dispersal is symmet-

ric and the group is abelian (multiplication is commutative—

discussed later). It also applies in the Wright–Fisher model with

fecundity selection, and in this case dispersal is allowed to be

asymmetric. We will comment later on some of the interesting

exceptions, such as the Moran process with asymmetric disper-

sal, and the Wright–Fisher process with partial survival.

A Group-Structured Population
Our homogeneity assumption, roughly speaking, is that the pop-

ulation “look the same” in terms of dispersal rates and interaction

effects when viewed from any breeding site. Here, we introduce

a natural and elegant reformulation of this condition in terms

of mathematical group theory. A group G is a set of elements i

with a binary operation (which we represent multiplicatively) that

satisfies the following three axioms:

1. There is an identity element e with the property

ei = ie = i for all i.

2. Every element i has a unique inverse i−1 such that

ii−1 = i−1i = e.

3. The operation is associative:

i(jk) = (ij)k for all i, j, and k.

The group is called abelian if ij = ji for all i and j. Examples

of two groups of order 8 are given in Figure 1.

To apply this to our population, we let the breeding sites

(the nodes) be the elements of the group. To specify the group

multiplication, we use the homogeneity of the structure. Take

a random node and label it e. Now take another node i. The

homogeneity property is that the population should look the same

from i as it does from e. In particular, for any node j, there should

be a node that looks the same from i as j looks from e. We call

that node ij and this in fact defines the multiplication operation

on the node set (Fig. 2). For all of the homogeneous population

structures that we have encountered in the theoretical literature,

in particular, stepping-stone structures, cycles, lattices, tori, and

island structures (Fig. 3), this operation satisfies the axioms of a

group.
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Figure 2. The group structure on the set of breeding sites. The group multiplication is illustrated in (A). For example, j−1 is the node from

which e looks the same as j looks from e. In (B), the associativity is illustrated—that “extending” from ij by k is the same as “extending”

from i by jk. The diagram is not meant to include all of the nodes nor all of the arcs, but enough connections are shown to capture the

properties of node multiplication. Sometimes the offspring dispersal between sites i and j will be symmetric [d(i, j) = d(j, i)] and in this

case we draw an edge between the nodes (no arrow). When the relationship is asymmetric, we use an arc signaled by an arrow. A group

is called abelian if ij = ji for all i and j. Panel (C) suggests that this might always be expected, but there are nonabelian groups (Fig. 4).

The problem with (C) is that it uses a vector addition representation of group multiplication and vector addition is commutative.
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Figure 3. A collection of homogeneous population structures. (A)

a regular graph; (B) an infinite lattice—can be made finite (a torus)

by identifying opposite boundaries, (C) a cycle, (D) an island model

with 30 sites organized into five demes each with three dyadic

patches. In example (D), the light and heavy edges correspond to

two different dispersal rates. There will also be dispersal between

demes but these edges are not shown. We assume however that

offspring leaving the deme settle at random on the other demes.

This population provides a good example of how a group structure

can be imposed on a homogeneous population. Effectively we use

the geometric symmetry obtained by arranging the demes and the

sites within a deme in a cycle. If we index the demes in order from

0 to 4 and the nodes within each deme in order from 0 to 5,

then every node can be specified by its angular displacement (θ,

ϕ) from (0, 0) where the site angle θ is a multiple of 60◦ and the

deme angle ϕ is a multiple of 72◦. Then group multiplication is

simply addition of the component angles. This gives us an abelian

group structure. An isolated island of this type can be regarded as

a finite population with N = 30 sites. To get an infinite population,

we could take an infinite unstructured collection of such islands

with some interisland dispersal.

Now we make precise the homogeneity condition that the

population “looks the same” when viewed from any breeding

site. This is an assumption that the dispersal probabilities and the

primary fitness effects are both invariant under the group structure.

For the fitness effects we suppose that breeder fecundity Fj and

survival Sj depend on the trait level zk at a number of sites k. That

is, for any i, j, and k

d( j, k) = d(i j, ik) (2)

∂Fj

∂zk
= ∂Fij

∂zik
(fecundity invariance) (3)

∂Sj

∂zk
= ∂Sij

∂zik
(survival invariance). (4)

We emphasize that the product subscripts ij and ik in (2)–(4) are

not double subscripts but are single subscripts that are products.

Now suppose that a breeder can observe when each breeder

dies, where each breeder sends her offspring and with whom each

breeder interacts. Then equations (2)–(4) tell us that if we took

the breeder on one site, and without her knowledge moved her

to another, she would be unable to tell that she had been moved.

This is the homogeneity condition.

The Inclusive Fitness Effect
The relatedness coefficients R(j, k) are determined as the solutions

of a set of recursive equations (Appendix and Appendix S1) in-

volving only the dispersal coefficients d(j, k) and it follows from

equation (2) that these are also invariant under left multiplication:

R( j, k) = R(ij, ik). (5)

We calculate the inclusive fitness effect using the neighbor-

modulated approach (Taylor and Frank 1996). We calculate the

fitness of a focal breeder measured as the expected number of

offspring who win breeding sites in the next generation (Wright–

Fisher) or the difference between the birth rate and the death rate

(Moran BD) as

we =
∑

j

Fed(e, j)∑
i

Fi d(i, j)
(Wright–Fisher) (6)

we = Fe −
∑

i

Fi
d(i, e)(1 − Se)∑

j

d(i, j)(1 − Sj )
(Moran BD) (7)

we =
∑

i

(1 − Si )
Fed(e, i)∑

j

Fj d( j, i)
− (1 − Se) (Moran DB). (8)

In equation (6) the numerator is the relative number of focal

offspring competing at site j and the denominator is the total

relative number at j, so that we is the probability a focal offspring

will win the site. In equation (7) the summation term is focal

mortality. Here Fi is the rate at which site i produces offspring

and the quotient is the probability that a site i offspring will

displace the focal breeder. Note that this depends on a product

of the tendency of such offspring to disperse to the focal site

and the focal vulnerability 1 − Se. In equation (8), offspring are

produced only when there is a local vacancy to fill and the ith

summand gives the rate at which focal offspring will colonize site

i, this being determined by the mortality rate of breeder i, and the

relative competitive pressure of the focal breeder at site i.
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The inclusive fitness effect is then

WI =
∑

k

R(e, k)
∂we

∂zk
, (9)

where the derivatives are evaluated at the resident value ẑ.

Results
Our purpose is to establish Theorem 1. To have a specific version

for the Moran model, we work with a BD demographic with

selection only on fecundity Fi. We will comment later on other

versions.

THEOREM 1

Suppose we have a population of breeding sites structured as an

abelian group, each site inhabited by an asexual haploid breeder.

Suppose that generations are nonoverlapping (Wright–Fisher pro-

cess) or continuous (Moran process) with a BD protocol. In the

Moran model, but not in the Wright–Fisher model, we require

that dispersal be symmetric. Consider a behavioural trait which

has a primary effect on the fecundity of the actor at node e and

of others. Suppose the dispersal probabilities d(j, k) and the fe-

cundity effects ∂Fj/∂zk are both invariant under left multiplication

(eqs. 2 and 3). Then in an infinite population the inclusive fitness

effect of the behaviour has the same sign as the effect of the focal

behaviour on her own fecundity. In a finite population we have to

normalize by subtracting the average effect of the focal behaviour

on the fecundity of all other breeders in the population. [In an

infinite population, this correction is zero.]

Infinite population : WI ∼ ∂Fe

∂ze
(10)

Finite population :

WI ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂Fe

∂ze
− Ei �=e

(
∂Fi

∂ze

)
(inclusive fitness)

∂Fe

∂ze
− Ei �=e

(
∂Fe

∂zi

)
(neighbour modulated)

(11)

where the derivatives are evaluated at the resident value ẑ.

In the Appendix we provide a proof for one of the four cases

of Theorem 1, the Moran model in an infinite population. The

other three cases are variations on this and are proved in the

Appendix S1.

FUNDAMENTAL ASSUMPTION BEHIND

THE INCLUSIVE FITNESS METHOD

Theorem 1 requires the standard genetic assumptions of addi-

tive gene action and small effects of individual genes on fitness

(Rousset and Billiard 2000; Taylor et al. 2007a). For example,

there can be no synergistic effects between actor and recipient or

among recipients (Queller 1985).

TWO COMPUTATIONAL APPROACHES

The equivalence of the two forms in equation (11) derives from

the observation that ∂Fi
∂ze

= ∂Fe
∂zi−1

(eq. 3) and the average of the

latter over all i �= e is the same as the average found in the

neighbor-modulated form of (11). These two forms correspond to

the two standard ways of calculating the inclusive fitness effect,

the classical inclusive fitness approach in which we consider the

effect of the focal deviant behaviour on the fitness of others,

and the neighbor-modulated approach in which we consider the

effect of the behaviour of others on focal fitness. It is important,

conceptually as well as computationally, to have both approaches

at hand. Our proof of the Theorem works with the neighbor-

modulated approach.

THE ASSUMPTION THAT DISPERSAL IS SYMMETRIC

Previous results have assumed the symmetry of the dispersal rates

[d(i, j) = d(j, i)] but we have shown that this is not always needed.

Asymmetric dispersal is expected to be found at a significant level

whenever the population sits in a “flow”-environment such as at

the bottom of a stream or under prevailing winds. Of interest is our

finding that Theorem 1 requires dispersal to be symmetric under

a Moran process but not under Wright–Fisher. Example 3 below

describes a cycle population with one dispersal rate clockwise

and another counterclockwise. Under a Moran demography, this

produces a selection pressure on altruism in one direction and

on spite in the other, but the same asymmetric dispersal structure

with a Wright–Fisher demography will satisfy the assumptions of

Theorem 1 and cannot support altruism.

THE MORAN PROCESS—FECUNDITY

VERSUS SURVIVAL

Behavioural interactions will generally affect one or both of the

fecundity Fj and the survival Sj. Parallel to this, we have the two

standard protocols for the Moran model BD and DB described

above. Theorem 1 has assumed a BD protocol with primary ef-

fects on fecundity and uniform survival, but it also holds un-

der a DB protocol with primary effects on survival and uniform

fecundity—the proof is virtually identical with survival Si in place

of fecundity Fi and we outline it here. Under the DB protocol with

survival selection and constant fecundity, focal fitness (8) can be

written we = Se − ∑
i Si d(e, i). This is the same as the fecun-

dity equation (Appendix A1) for BD with d(i, e) replaced by

d(e, i), and, of course, F replaced by S. Given symmetric disper-

sal, the argument goes through exactly as in the fecundity effect

case.

PARTIAL SURVIVAL IN WRIGHT–FISHER

In the standard Wright–Fisher model generations do not overlap

so that there is no variation in survival (all breeders die). How-

ever an intermediate demographic has discrete generations that

EVOLUTION MARCH 2011 8 5 3
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Table 1. Summary of results. Theorem 1 fails to hold in general for a Wright–Fisher demography with partial survival (Taylor and Irwin

2000) and for a Moran demography with survival selection under BD or fecundity selection under DB. Here, we summarize the situation

for the remaining cases. Some of these that are not covered by Theorem 1 are discussed in the Examples or in the Supporting information.

We consider the case of a nonabelian group to be of limited biological interest and the proofs for this case are not presented. They are

available from PDT.

When does Theorem 1 hold?

Group Abelian Group Non-Abelian

Dispersal symmetric Dispersal asymmetric Dispersal symmetric Dispersal asymmetric

Wright–Fisher
(fecundity selection)

YES Theorem 1 YES Theorem 1 YES (proof not given) NO Fig. 4 (Appendix S3)

Moran BD (fec. sel.)
DB (surv. sel.)

YES Theorem 1 NO Example 3 Fig. 5
(Appendix S2)

YES (proof not given) NO Fig. 4 (Appendix
S3) not presented

overlap—rather than being replaced by an offspring, breeder j

survives to the next generation with probability Sj. In this case,

Theorem 1 does not hold and altruism and spite can both be se-

lected. For example, Taylor and Irwin (2000) have investigated

this demography in an infinite island model (with demes of con-

stant size) and found that, for interactions at random with deme-

mates, altruism can be favored (with a large enough b/c ratio)

under fecundity selection (with constant breeder survival) and

spite can be favored (with a large enough h/c ratio) under survival

selection (with constant breeder fecundity). Here, h is the harm

inflicted on the deme mate (increased mortality) at cost c. Similar

results are found in Irwin and Taylor (2001) in a stepping-stone

population.

THE ABELIAN ASSUMPTION

Theorem 1 assumes that the underlying group is abelian. This

assumption is often not needed (see Table 1) but having it makes

the proof of Theorem 1 simpler. In practice this is not a signif-

icant restriction as all standard homogenous structures found in

the literature are abelian. For this reason, we have not in this

treatment paid much attention to nonabelian groups. The small-

est such group has 6 nodes and can be realized as the group

of all permutations of 3 objects under composition (Fig. 4). Us-

ing this group we can construct an example of a Wright–Fisher

process for which Theorem 1 fails and altruism can be selected

(Appendix S3). But as we have suggested this is of more mathe-

matical than biological interest.

EXAMPLE 1. “HAMILTON’S RULE”

Consider an altruistic trait in which individuals give primary fe-

cundity benefits to various other individuals at total cost c. Then,

focal fecundity might have the form Fe = 1 − cze + ∑
i bi zi

where bi is the focal benefit received from site i when there is

an altruist at that site. To move from there to a calculation of

WI , we need the offspring dispersal patterns, both to calculate the

competitive effects (which are needed for focal fitness we) and

to get the focal relatedness coefficients. However the Theorem

tells us that none of that is actually needed (assuming symmetric

dispersal in an abelian group):

Figure 4. (A) A nonabelian group with six nodes. We have given

the elements abstract names corresponding to the colors (or

weights) of the edges from the identity e: a, arrow, b, back arrow,

p, purple (heavy), g, green (light) and r, red (dotted). To multiply by

any of these just follow the appropriate edge. Thus ap = r because

if we follow the purple edge from a we get to r. On the other hand,

pa = g because the arrow leaving p leads to g. Thus the group is

nonabelian. To specify the dispersal probabilities, we are free to

choose the six dispersal rates d(e, h) for h = e, a, b, p, g, r. And

then the rates d(j, k) will be obtained from the invariance equa-

tion (2): d(j, k) = d(e, j−1k). Check that a breeder who can see only

the dispersal rates will see the same structure from every node.

In the Appendix S3, we use this population structure to construct

an example of an infinite nonabelian group in which equation (8)

fails under a Wright–Fisher process. (B) Demonstration that the

group is isomorphic to the group S3 of all permutations of three

objects (which is the smallest nonabelian group). The six elements

of this group are written: {e, (123), (132), (12), (13), (23)} where we

use cyclic notation, so that (123) represents the permutation that

maps 1 to 2, 2 to 3, and 3 to 1, and (12) is the “transposition” that

interchanges 1 and 2 and leaves 3 fixed. Group multiplication is

by composition (left to right), so that (123)(12) = (23) because if

we apply (123) and then interchange 1 and 2, the net result is the

interchange of 2 and 3. Observe that (12)(123) = (13).

8 5 4 EVOLUTION MARCH 2011



INCLUSIVE FITNESS ANALYSIS ON MATHEMATICAL GROUPS

Infinite population : WI ∼ ∂Fe

∂ze
= −c

Finite population : WI ∼ ∂Fe

∂ze
− Ei �=e

(
∂Fe

∂zi

)
= −c − b̄,

where b̄ is the average value of the bi over all nonfocal individuals.

The finite population equation was obtained for the Moran process

by Taylor et al. (2007b) and Grafen and Archetti (2008). In these

versions, the actor gives b to a single other individual so that b̄ =
b/ (N − 1) where N is population size. These equations make it

clear that altruism can never be selected. In an infinite population,

spite (bi < 0—Hamilton 1971; Gardner and West 2004) can also

never be selected, but it “can” be selected in a finite population if

the average harm done by a focal actor to other individuals in the

population exceeds the focal cost.

What became of Hamilton’s rule br > c? Well first of all

there might be many b’s so the rule would have to be written:∑
i bi Ri > c. But second, these are all primary fitness effects,

and once the secondary effects are added in, the bi evidently all

cancel out. Indeed that is the thrust of Theorem 1. A significant

question, for both theory and experiment, is to identify the struc-

tural variations on homogeneity, which will bring the bi back and

allow cooperation to evolve. We understand this to be a question

of expanding the “scale of competition” in a way that will not

reduce the relatedness among interactants (Queller 1994; Griffin

et al. 2004 and Kummerli et al. 2009). Griffin et al. (2004) include

a nice graph that shows cooperation approaching zero as the scale

of competition becomes local. That is Theorem 1 kicking in.

EXAMPLE 2. COMPETITION

Take a finite population of annual plants with five demes of six

breeders, each deme structured as three patches of size 2 (Fig. 3D).

Consider a competitive trait such as height so that focal fecundity

is a function F of the difference between focal height and the

average height of the others in the deme, in which this average is

weighted, with the focal patchmate given four times the weight of

each of the others. In addition, we suppose that there is a quadratic

cost to increased height. An expression with these properties has

the form:

Fe = F

(
ze − 4z1 + z2 + z3 + z4 + z5

8

)
− cz2

e ,

where ze is focal height, z1 is its patchmate’s height, and the

remaining zi are the heights of the other four deme-mates.

Again to move from here to WI , we need the offspring dis-

persal patterns within and between demes, both to calculate the

competitive effects and to get the various focal relatedness coeffi-

cients. However, given that seed dispersal has the same geometric

symmetry pattern as the population structure itself, equations (2)

and (3) will hold, and equation (11) gives us the inclusive fitness

effect of increased height to be

WI ∼ ∂Fe

∂ze
− Ei �=e

(
∂Fe

∂zi

)

= F ′(0) − 2cẑ − F ′(0)
1

5

(
−4 + 1 + 1 + 1 + 1

8

)

= 6
5 F ′(0) − 2cẑ.

This gives us an equilibrium height of ẑ = 3F ′(0)
5c and this can

be shown to be stable.

EXAMPLE 3. A CYCLE WITH ASYMMETRIC

DISPERSAL

The population is depicted in Figure 5. We use a Moran process

with a BD protocol. We study an altruistic or spiteful trait whereby

a breeder gives fecundity increment b to her clockwise neighbor at

fecundity cost c. In the Appendix S2, we show that the condition

WI > 0 for the trait to be selected is that b( α−2β

2(α+β) ) > c. For

symmetric dispersal (α = β) we get the Theorem 1 result: −c −
b/4 > 0, as expected, but for α > 2β altruism is selected for

sufficiently large b. For example, for α = 4β, the condition is b >

5c—a gift to the “clockwise” neighbor is selected if it is at least

five times the cost. At the same time, taking β = 4α, harm h done

to my “counter-clockwise” neighbor at cost c will be selected

when 7h > 10c. We have altruism one way and spite the other.

In the Appendix S2, we also verify directly that the conclusion

of Theorem 1 holds for this population under a Wright–Fisher

demographic.

As a remark we report that for a cycle of size N the condition

WI > 0 is

b

(
α(N − 3) − β(N − 1)

(α + β)(N − 1)

)
> c.

For large N, α needs only be a bit greater than β for altruism to be

selected.

Figure 5. A five-cycle asymmetric dispersal. We show the disper-

sal pattern for offspring at node 0, but the same pattern applies

to the other nodes. Offspring disperse with probability α to the

immediate clockwise neighbor, β to the counter-clockwise neigh-

bor. With probability γ = 1 − α − β they remain at home and

displace their parent. To obtain the group structure, number the

nodes from 0 to 4, clockwise and take the group multiplication to

be addition mod 5, e.g., 2 + 4 = 6 = 1 (cast out 5). Essentially, this

gives us the rotation group generated by the clockwise rotation

through one-fifth of a revolution. This group is clearly abelian.

EVOLUTION MARCH 2011 8 5 5



PETER TAYLOR ET AL.

EXAMPLE 4. FRANK’S MODEL OF WITHIN-DEME

COMPETITION

We consider an infinite asexual haploid island population consist-

ing of demes of size n. [For the model we are discussing here the

word “group” is usually used but to avoid an obvious confusion

we will use the term “deme.”] We assume a Moran model of con-

tinuous reproduction in which an offspring displaces a breeder

chosen at random from the natal deme with probability h and

otherwise disperses to a breeding site on a distant deme. With this

structure, a standard recursive argument shows that within-deme

relatedness (focal to entire deme including self) will depend on

both n and h:

R = 1

n − h(n − 1)
. (12)

Frank’s (1994) model for within-deme competitiveness nec-

essarily sits in a structured population, but it is nevertheless usu-

ally presented with an upfront assumption on the mathematical

form of “fitness”:

W (ze, z̄) = ze

z̄
(1 − z̄) (13)

with ze the focal phenotype and z̄ the average phenotype of the

focal deme. The inclusive fitness effect is then:

WI = ∂W

∂ze
+ ∂W

∂ z̄
R

where R is the average relatedness to the deme. This gives us

WI = 1 − z − R

z
(14)

with an equilibrium at

z∗ = 1 − R = (n − 1)(1 − h)

n − h(n − 1)
(15)

using the formula for R in equation (12).

However suppose, as seems more reasonable, that the com-

petitive behaviour directly affects only breeder “fecundity” F,

leaving the indirect mortality effects of offspring recruitment to

be determined by the population structure. In this case we might

assume that fecundity itself has the form we assumed in equation

(13) for fitness W:

Fe = f (ze, z̄) = ze

z̄
(1 − z̄). (16)

Because the island structure is homogeneous, the inclusive

fitness effect will be given by equation (10):

WI = ∂Fe

∂ze
= ∂ f

∂ze
+ ∂ f

∂ z̄

∂ z̄

∂ze
= ∂ f

∂ze
+ ∂ f

∂ z̄

1

n
(17)

This is the same expression as above (using f instead of W)

with R replaced by 1/n (although the actual R is given by the

formula at the top of this page). The equilibrium has the simple

form:

z∗ = 1 − 1

n
= n − 1

n
. (18)

The two formulae, (15) and (18), for z∗ are close but not quite

the same.

Discussion
GROUP THEORY

Long before the theory of groups was properly formulated, math-

ematicians and physicists were using its ideas to try to understand

the geometry of objects, such as polyhedra, that have a significant

amount of internal symmetry. We have argued that such internal

symmetry is effectively what is assumed in most “unstructured”

inclusive fitness models, so that in a homogeneous structured

population, group theory seems an ideal vehicle to formalize the

analysis—and it gives us simpler and stronger analytical tools. Fi-

nally it provides a conjunction of two elegant theoretical domains,

mathematical group theory and inclusive fitness analysis.

PREVIOUS RESULTS

Previous discussions of inclusive fitness in homogeneous popula-

tions (Taylor 1992a, 1992b; Queller 1994, West et al. 2002; Taylor

et al. 2007b; Grafen and Archetti 2008) worked with altruism, but

our formulation applies to any social trait that affects fecundity.

Previous results work with assumptions of transitivity, which at

first appear to be weaker than our assumption of group structure.

[A structure is transitive if for every pair of nodes i and j, there is

a node bijection mapping i to j and preserving dispersal and inter-

action probabilities.] Certainly any group-structured population

is transitive (group multiplication provides the bijections), but it

is not known whether there are transitive structures, which are

not groups. This question is closely related to an open problem in

group theory (Appendix S4).

RELAXING THE ASSUMPTIONS

In the Supporting information, we discuss a number of examples

in which the assumptions of Theorem 1 do not hold. Section S2

looks at asymmetric dispersal and S3 presents an analysis of a

nonabelian group.

TYPES OF INHOMOGENEITY

Theorem 1 has significant limitations. Although it can be made

to work for a sexual diploid population if males and females are

treated the same, it does not generally apply in a class- or age-

structured population, nor to ploidies other than 1. In particular,

it does not apply to sex-ratio traits, or to sex-specific behaviour.

The recent study of Cornwallis et al. (2010) on the relationship

between helping at the nest and local relatedness (affected by
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levels of promiscuity) is a good example of a population structure

exhibiting many of the complexities that Theorem 1 is unable

to deal with. Second, although the trait is supposed to affect the

fecundities Fi, it cannot affect the offspring dispersal probabili-

ties d(i, j). In particular, it does not apply in models of optimal

dispersal. It seems to apply most readily in models of cooperation

and competition.
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Appendix
Here, we provide a proof for one of the four cases of Theorem 1,

the Moran process in an infinite population. The other three cases

have similar arguments and are treated in the Appendix S1. Our

calculations assume that the group is abelian and that dispersal is

symmetric. One observation we make is that is that the relatedness

recursions (eq. A3 below) are linear in d(k, h). For the Wright–

Fisher process, these same recursions are quadratic (S1.6). This

is an illustration of the difference between Grafen and Archetti’s

(2008) 1-circle and 2-circle (Table A2).

CALCULATION OF WI

These calculations are the same for both infinite and finite pop-

ulations. Under the BD protocol with fecundity selection and

constant survival, focal fitness (7) can be written

we = Fe −
∑

i

Fi d(i, e). (A1)

Hence

∂we

∂zk
= ∂Fe

∂zk
−

∑
i

∂Fi

∂zk
d(i, e)

= ∂Fe

∂zk
−

∑
i

∂Fe

∂zi−1k
d(i, e)
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Table A2. “Circles of compensation” (Grafen and Archetti 2008)

The “competitive distance” rC : Suppose a focal breeder is given

an extra unit of fecundity. Then rC is the distance at which the

competitive effects are felt. The “gene-flow distance” rG is the

number of dispersal steps the two genes in a pair of breeders had

to travel in the most recent gene replacement involving the pair.

These distances are recorded in (A) for a number of standard mod-

els. In (B), we tabulate the results of Grafen and Archetti’s (2008)

heuristic analysis, which assumes a primary fecundity gift b. Our

results conform to this analysis except in the case of a nonabelian

group structure under Wright–Fisher demography with asymmet-

ric offspring dispersal. In this case, rC=rG but the theorem fails to

hold and altruism is favored.

(A)

Demography rC rG

Moran BD 1 1
Moran DB 2 1
Wright–Fisher 2 2
Wright–Fisher with partial survival s 2 s1+(1−s)2

(B)

Benefit-cost interaction c>0

rC=rG. theorem holds—neither altruism nor spite selected
rC>rG. altruism favored (b>0) if b/c sufficiently large
rC<rG. spite favored (b<0) if −b/c sufficiently large

[Change variable h = i−1k so that d(i, e) = d(e, i−1) = d(e,

i−1kk−1) = d(e, hk−1) using eq. 2]

= ∂Fe

∂zk
−

∑
h

∂Fe

∂zh
d(e, hk−1)

Now put this expression into equation (9)

WI =
∑

k

R(e, k)

(
∂Fe

∂zk
−

∑
h

∂Fe

∂zh
d(e, hk−1)

)
.

For all h, the coefficient of ∂Fe/∂zh in WI is

R(e, h) −
∑

k

R(e, k)d(e, hk−1) (A2)

RELATEDNESS RECURSIONS

The equilibrium values of relatedness can be found directly from

the recursive equations for R. Recall that in this case we ignore

mutation, giving long-distance dispersal the task of maintaining

genetic variance.

Take h to be a site distinct from e. Because the alleles are

neutral the two sites, e and h, will have equal probability (1/2) to

be the one most recently replaced. In the expression for R(e, h)

below, the first sum assumes that this is e and the second assumes

that this is h. At equilibrium:

R(e, h) = 1

2

⎡
⎣∑

j

R( j, h)d( j, e) +
∑

k

R(e, k)d(k, h)

⎤
⎦ (h �= e)

(A3)

We begin by showing that the two terms in the square brackets

are the same. The left-hand term is∑
j

R( j, h)d( j, e)

=
∑

j

R(e, j−1h)d( j, e) (invariance under left multiplication)

=
∑

k

R(e, k)d(hk−1, e) (k = j−1h, so that j = hk−1)

=
∑

k

R(e, k)d(k−1h, e) (commutativity of multiplication)

=
∑

k

R(e, k)d(h, k) (invariance under left multiplication)

and the symmetry of d gives us the right-hand term.

It follow from (A3) that R(e, h) is equal to the right-hand

term:

R(e, h) =
∑

k

R(e, k)d(k, h) (A4)

Using invariance and commutativity:

d(k, h) = d(h−1k, e) = d(kh−1, e) = d(h−1, k−1) = d(e, hk−1)

and we deduce

R(e, h) =
∑

k

R(e, k)d(e, hk−1)

this tells us that (A2) is zero so that the coefficient of ∂Fe/∂zh is

zero for h �= e and we are left with only the h = e term in WI .

Setting h = e in (A1) we get:

WI =
[

1 −
∑

k

R(e, k)d(e, k−1)

]
∂Fe

∂ze
.

Note that
∑

k R(e, k)d(e, k−1) is an average of relatedness

coefficients and will be less than 1. Hence the term in the square

brackets is positive, and we get equation (10).
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Supporting Information
The following supporting information is available for this article:

Appendix S1. Demonstration of Theorem 1.

Appendix S2. Investigating the assumption of symmetric dispersal—an example of an abelian group structure with asymmetric

dispersal for which the conclusions of Theorem 1 fail for the Moran process (but not of course for Wright–Fisher).

Appendix S3. An example of a nonabelian group structure with asymmetric dispersal for which the conclusions of Theorem 1

fail for a Wright–Fisher process.

Appendix S4. Supplementary material for inclusive fitness on groups: Does every node-transitive weighted digraph have an

equivalent group structure?

Supporting Information may be found in the online version of this article.

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting information supplied by the

authors. Any queries (other than missing material) should be directed to the corresponding author for the article.
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